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Elastic Behavior of a Two-Dimensional Crystal Near Melting
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Using positional data from video microscopy, we determine the elastic moduli of two-dimensional
colloidal crystals as a function of temperature. The moduli are extracted from the wave-vector-dependent
normal-mode spring constants in the limit q ! 0 and are compared to the renormalized Young’s modulus
of the Kosterlitz-Thouless-Halperin-Nelson-Young theory. An essential element of this theory is the
universal prediction that Young’s modulus must approach 16� at the melting temperature. This is indeed
observed in our experiment.
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In the early 1970s, Kosterlitz and Thouless [1] devel-
oped a theory of melting for two-dimensional systems. In
their model the phase transition from a system with quasi-
long-range order [2] is mediated by the unbinding of
topological defects, such as vortices or dislocation pairs
in the case of 2D crystals. They showed that the phase with
higher symmetry has short-range translational order.
Halperin and Nelson [3,4] pointed out that this phase still
exhibits quasi-long-range orientational order and proposed
a second phase transition now mediated by the unbinding
of disclinations to an isotropic liquid. The intermediate
phase is called the hexatic phase. This theory, based also
on the work of Young [5], is known as the KTHNY theory
(Kosterlitz, Thouless, Halperin, Nelson, and Young). It
describes the temperature-dependent behavior of the elas-
tic constants, the correlation lengths, the specific heat, and
the structure factor (for a review, see [6,7]). Experiments
with electrons on helium [8,9] and with 2D interfacial
colloidal systems [10–14] as well as computer simulations
[15–17] have been performed to test the essential elements
of this theory, but research has mainly focused on the
behavior of the correlation functions (an illustrative ex-
ample is the work of Murray and van Winkle [11]). Only a
few works can be found that deal with the elastic constants,
especially the shear modulus [9,18–21], even though the
Lamé coefficients [22] and their renormalization near
melting take a central place in the KTHNY theory.

Avery strong prediction of the KTHNY theory has never
been verified experimentally. It states that the renormalized
Young’s modulus KR�T�, being related just to the renor-
malized Lamé coefficients �R and �R, must approach the
value 16� at the melting temperature [4],

KR�T� � 4�R�1� �R=�2�R � �R�� ! 16�

if T ! T�
m ; (1)

which is obviously a universal property of 2D systems at
the melting transition. This Letter presents experimental
data for elastic moduli of a two-dimensional colloidal
04=93(25)=255703(4)$22.50 25570
model system, ranging from deep in the crystalline phase
via the hexatic to the fluid phase. These data, indeed,
confirm the theoretical prediction expressed by Eq. (1).

The experimental setup is the same as already described
in [23]. The system is known to be an almost perfect 2D
system; it has been successfully tested and explored in
great detail in a number of studies [14,23–25]. Therefore
we only briefly summarize the essentials here: Spherical
colloids (diameter d � 4:5 �m) are confined by gravity to
a water-air interface formed by a water drop suspended by
surface tension in a top sealed cylindrical hole of a glass
plate. The flatness of the interface can be controlled within
	 half a micron. The field of view was 835
 620 �m2,
containing typically up to 3
 103 particles (the whole
system has a size of 50 mm2 and contains about 3
 105

particles). The particles are superparamagnetic, so a mag-
netic field ~B applied perpendicular to the air-water inter-
face induces in each particle a magnetic moment ~M � � ~B
which leads to a repulsive dipole-dipole pair-interaction
energy of �v�r� � 
=�

�������
��

p
r�3 with the dimensionless

interaction strength given by 
 � ���0=4��


��B�2����3=2 (� � 1=kT is the inverse temperature, � is
susceptibility, and � denotes area density). The interaction
can be externally controlled by means of the magnetic field
B. 
 was determined as in Ref. [14] and is the only
parameter controlling the phase behavior of the system.
It may be considered as an inverse reduced temperature,
T � 1=
. For 
 > 
m � 60, the sample is a hexagonal
crystal [14,25]. Coordinates of all particles at equal time
steps and for different ‘‘temperatures,’’ i.e., 
’s, were
recorded using digital video microscopy and evaluated
with an image-processing software. We measured over
2–3 h and recorded trajectories of about 2000 particles
in up to 3600 configurations for a large number of different

’s ranging between 
 � 49, deep in the fluid phase, to

 � 175 in the solid phase. These trajectories were then
further processed to compute the elastic constants of the
colloidal crystal as a function of the inverse temperature 
.
3-1  2004 The American Physical Society



PRL 93, 255703 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
17 DECEMBER 2004
Our data analysis is based on the classical paper of
Nelson and Halperin (NH) on dislocation-mediated melt-
ing in 2D systems [4]. Their considerations start from the
reduced elastic Hamiltonian,

�H E �
1

2

Z d2r

a2 �2�u2
ij � �u2

kk�; (2)

where a is the lattice constant of a triangular lattice (next-
neighbor distance), while � � �a2=kT and � � �a2=kT
denote the dimensionless Lamé coefficients. uij� ~r� �
�@rj

ui� ~r� � @ri
uj� ~r��=2 is the usual strain tensor related to

the displacement field ~u� ~r�. At temperatures T near the
melting temperature Tm, the field uij� ~r� contains singular

parts using
ij � ~r� due to dislocations; it can be decomposed into

uij� ~r� � using
ij �~r� � �ij� ~r�, with �ij� ~r� � �@rj

�i� ~r� �

@ri
�j�~r��=2 being a smoothly varying function [ ~��~r� is

the regular part of the displacement field ~u� ~r�]. When
this decomposition is inserted in Eq. (2), the Hamiltonian
decomposes into two parts: �H E �

1=2
R

d2r=a2�2��2
ij � ��2

kk� � �HD, with HD repre-
senting the extra elastic energy that is due to the disloca-
tions. NH were able to derive a set of differential equations
for renormalized Lamé coefficients, �R and �R, by means
of which H E can again be written as in Eq. (2),

�H E �
1

2

Z d2r

a2 �2�Ru2
ij � �Ru2

kk�: (3)

Because the effect of the dislocations is entirely absorbed
into the elastic constants, the strain tensor in Eq. (3) can
now be assumed to be again regular everywhere and for all
T < Tm.

Our experiment measures the trajectories ~ri�t� of N
particles of a colloidal crystal over a finite time window
of width texp. Associating the average h ~riitexp with a lattice

site ~Ri, for each particle we can compute displacement
vectors ~u� ~Ri� � ~ri � ~Ri. The Fourier transforms of these
displacement vectors, ~u� ~q� � N�1=2P

~Rei ~q ~R ~u� ~R�, are now
used for the numerical computation of renormalized elastic
constants. This has been done in the following way.
Starting from Eq. (3.29) of Ref. [4],

lim
~q!0

q2hu�
i � ~q�uj� ~q�i �

kT
v0

�
1

�R
#ij �

�R � �R

�R�2�R � �R�



qiqj

q2

�
; (4)

we find, after decomposing the displacement field ~u� ~q� into
parts ~ujj� ~q� and ~u?� ~q�, parallel and perpendicular to ~q, that

v0�2�R��R�

kT
� lim

~q!0
$jj� ~q�; $jj :��q2hjujj� ~q�j

2i��1; (5)
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v0�R

kT
� lim

~q!0
$?� ~q�; $? :� �q2hju?� ~q�j2i��1; (6)

where v0 �
���
3

p
a2=2 is the area per colloid in a triangular

lattice.
These two equations are the central equations for our

data evaluation scheme and are therefore more carefully
discussed. Deep in the solid phase, h~ri�t converges with
increasing measurement time �t to lattice sites, and
hj ~u� ~R�j2i and �q2hj ~u� ~q�j2i�q!0 remain finite, and thus lead
to two nonzero elastic moduli: the shear modulus � and the
bulk modulus B � � � �. By contrast, in the fluid phase,
h~ri�t will neither converge to, nor correlate with, any sort
of lattice site and, in addition, as the mean square displace-
ment is unbound, �q2hj ~u� ~q�j2i�q!0 ! 1, so, both moduli
will vanish (while B survives [26]).

Though reasonable at first glance, this interpretation of
Eqs. (5) and (6) is in fact an oversimplification and ignores
the limited applicability of both equations. This can best be
seen by rederiving them, first by Fourier-transforming
Eq. (3), then by inserting the decomposition ~u �
~ujj � ~u?, and finally by applying the equipartition theo-
rem. The intimate relationship between Eq. (3) and Eqs. (5)
and (6) lets us realize that the ~u� ~q� in Eqs. (5) and (6) refer
to a coarse-grained, and thus regular, displacement field,
just as in Eq. (3). In other words, with Eqs. (5) and (6) the
softening of the elastic constants for T ! T�

m is inferred
indirectly, namely, from the change of the behavior of the
regular parts of a coarse-grained displacement field.

Here, we identify this coarse-grained displacement field
with the ~u� ~r�t�� � h ~ritexp � ~r�t� evaluated from our experi-
mental data. In doing so, we have to be aware of the
following two points. (i) In an imperfect crystal, especially
in the presence of dislocations, h~ritexp!1 does not always
converge to lattice sites. As we are interested in the limit
q ! 0, this is unproblematic, as long as these extra sites do
not move. Looking at our measured trajectories, we have
observed only thermally activated dislocation pairs, but no
static, isolated dislocations traveling through the crystal.
(ii) The displacement field computed from the experimen-
tal data has (and must have) parts stemming from disloca-
tions. The resulting error should be small, below Tm, when
the number of dislocations is still relatively low (even at
T � Tm, the probability that a particle belongs to a dis-
location is only 1%). However, the error should become
appreciable at T > Tm, where Eqs. (5) and (6) cannot be
expected to strictly hold any longer.

For the pair-potential �
=r3, the elastic constants can
be calculated in the limit 
 ! 1 (T � 0) using simple
thermodynamical relations involving essentially lattice
sums of the pair potential. One finds � � � � 3:46
 and
� � 0:346
 [27]. For convenience, we divide in the fol-
lowing all moduli by 
. Figure 1 shows �� � 2��v0=
kT
and �v0=
kT, obtained from this T � 0 calculation, as
thick solid arrows, and compares it to the expressions
3-2
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$jj� ~q�=
 and $?� ~q�=
 from Eqs. (5) and (6), as obtained
from the measured trajectories for three different values of

. Let us first focus on the measurement for 
 � 75; 125,
where the system is deep enough in the crystalline phase
for the assumption T � 0 to be valid. $jj� ~q�=
 and
$?� ~q�=
, indeed, tend to the predicted elastic constants
in the limit q ! 0, in agreement with Eqs. (5) and (6). For
either of the two plotted quantities, we consider two differ-
ent high-symmetry directions in q space, which are ~q1 �

q ~b1 and ~q2 � q� ~b1 � ~b2�=
���
2

p
, where ~b1 � �1; 0�a and

~b2 � �1;
���
3

p
�a=2 are basis vectors of the (hexagonal) re-

ciprocal lattice. At wavelengths larger than the lattice
constant (qa < 1), the results for both bands are identical,
thus indicating an essentially isotropic ~u� ~q� at small q.
$jj� ~q� and $?� ~q� can also be associated with the
~q-dependent normal-mode spring constants (elastic disper-
sion curves) of the discrete crystal, having longitudinal
�long� ~q� and transversal �trans� ~q� branches. This can be
(and has been [23]) compared to the band structure pre-
dicted by harmonic lattice theory (thick dashed lines in
Fig. 1; for details, see [23]). In other words, what we do
here is to derive elastic constants from the q ! 0 behavior
of the elastic dispersions curves [limq!0�long� ~q� � �� �

2��q2v0, limq!0�trans� ~q� � �q2v0].
While for all our measurements above 
 � 75 the re-

sulting bands lie on top of the dashed thick lines in Fig. 1,
one finds a systematic shift to smaller values for 
 < 75.
Figure 1 shows, as an example, one out of the four bands
[belonging to $?� ~q�=
] of the measurement in the fluid
phase (
 � 52). It lies an order of magnitude below the
crystalline bands.
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FIG. 1. $jj� ~q�=
 in a and $?� ~q�=
 in b, as defined in Eqs. (5)
and (6). Each quantity is plotted for two different directions in q
space (
 ! M and 
 ! K in the first Brillouin zone) and for
three different values of the interaction-strength parameter 
:

 � 52 in the fluid phase (open triangles), 
 � 75 (open
squares), and 
 � 125 (solid circles) in the crystalline phase.
Thick solid arrows are for a T � 0 prediction of the elastic
moduli, dashed solid lines for the predictions of harmonic crystal
theory. For 
 � 52, just one band is shown.
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In order to infer functions �R�
� and �R�
� from these
bands, we need to take the limit q ! 0. Since at low q we
have to expect finite size effects and at high q, near the
edges of the first Brillouin zone, effects resulting from the
band dispersion of the discrete lattice, we choose an inter-
mediate q regime (0:8 < qa < 2:5), indicated by the thick
solid bar in Fig. 1, to extrapolate the bands to q � 0,
applying a linear regression scheme. The extrapolation
procedure was optimized at high 
, for which we have a
precise idea what constants we should find. For each
modulus, extrapolation of the two bands depicted in
Fig. 1 was checked: while for $jj=
 one finds for both
bands the same modulus, the upper band of the two for
$?=
 gave a much better result and was henceforth taken.
Also, different extrapolation schemes have been checked,
but linear extrapolation turned out to produce a tolerably
small error, much smaller than the main error of our
measurement, estimated here from the standard error in
the linear regression scheme.

Figure 2 shows the resulting moduli, for all values of 

studied. Black symbols refer to systems in the crystalline
state (
 > 
m), gray data points to those in the fluid/hexatic
phase. We postpone the discussion of the data points at 
 <

m and first concentrate on the crystalline regime where a
renormalization of Lamé coefficients really makes sense.
The thick dashed lines in Fig. 2 represent the T � 0
calculation which holds down to 
 values close to 
 �
75. The thick solid lines show the theoretical curve for
�R�
� and �R�
� � 2�R�
�, which we computed follow-
ing the renormalization procedure outlined in the NH paper
[Eqs. (2.42), (2.43), and (2.45) in [4] with K�
� � 1:258

at T � 0 and 
m � 60 as input to set up the boundary
conditions]. Theory and experiment agree well, consider-
ing that no fit parameter has been used. For
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FIG. 2 (color online). Elastic moduli of a 2D colloidal crystal
as a function of the inverse temperature, obtained from extra-
polating the bands in Fig. 1 down to q � 0. The melting
temperature is at 
m � 60. Thick dashed lines are for a T � 0
prediction of the elastic moduli, � � 2� � 3:806
, and � �
0:346
 [27]; thick solid lines are for the theoretical elastic
constants, renormalized as described in [4].
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FIG. 3. Young’s modulus, Eq. (1), as a function of the inverse
temperature, evaluated with the experimentally determined
Lamé coefficients of Fig. 2 (symbols). The solid curve is
KR�
� renormalized according to [4], while the dashed curve
is based on the T � 0 prediction.
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 > 
m, all our results are converged, meaning that the
computed moduli do not depend on the length of the
trajectory. This is demonstrated by means of the 
 � 100
measurement for which the moduli were computed taking
only the first third of all configurations (open squares in
Fig. 2).

Figure 3 now checks Eq. (1), with KR�
� evaluated using
the elastic moduli from Fig. 2. Using the theoretical values
from the T � 0 calculation, we obtain K�
� � 1:258
,
shown in Fig. 3 as a dashed line. The thick solid line shows
the theoretical curve for KR�
�, which we computed with
Lamé coefficients that were renormalized following the
NH procedure explained above. The main result of this
work is that the experimental data points closely follow the
theoretical curve, and, indeed, they cross 16� at 
 � 
m,
in excellent agreement with the predictions of NH. The
length of the remaining error bars correlates with the total
measurement time and the q range chosen in the extrapo-
lation step.

The data points for 
 < 
m in Figs. 1 and 2 should be
treated with utmost caution. For the reasons given above, it
is not clear to us whether Eqs. (5) and (6) are at all mean-
ingful outside the crystalline phase. But even if it were, we
should be aware that the results will always depend on the
measurement time. This is demonstrated for a system at

 � 49, for which the moduli were calculated taking again
just a fraction of 1=3 of all configurations (open symbols in
Fig. 2). There is almost an order of magnitude difference in
the data points based on all configurations, thus indicating
the dependence of the moduli on the length of the analyzed
trajectories. Physically, one could interpret this in terms of
a frequency-dependent shear modulus which for nonzero
! � 1=texp is known to exist even in fluids.

To conclude, we have measured particle trajectories of a
two-dimensional colloidal model system and computed
elastic dispersion curves which at low ~q give access to
25570
the elastic constants. We thus measured �R, �R, and
Young’s modulus KR as a function of the inverse tempera-
ture 
. All three quantities compare well with correspond-
ing predictions of the KTHNY theory. Young’s modulus, in
particular, tends to 16� when the crystal melts, as pre-
dicted in [4].
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